本文共 2377 字,大约阅读时间需要 7 分钟。
在之前文章中,一直讲prometheus的metrics以及apm的指标的重要性,多侧重于收据的收集和存储。如果不对这些数据进行数据分析,那么就没有收集的意义了。通过数据分析和挖掘,让数据产生价值。一直以来我认为devops必须是一 个闭环,即apm,日志,监控着三大系统的数据,必须经过分析对dev和ops有价值。
数据可视化是大数据的『最后一公里』,做好可视化是对于数据分析是重要的。 今天,主要介绍这款数据分析的利器。redash是一款开源的BI工具,提供了基于web的数据库查询和数据可视化功能。
随时写,随时查,实时看到查询的效果
支持丰富的可视化展示形式
如果是想直接体验的话,docker-compose部署最简单,github仓库中直接提供了docker-compose.production.yml文件,直接docker-compose up -d 即可。
# This is an example configuration for Docker Compose. Make sure to atleast update # the cookie secret & postgres database password. # # Some other recommendations: # 1. To persist Postgres data, assign it a volume host location. # 2. Split the worker service to adhoc workers and scheduled queries workers. version: '2' services: server: image: redash/redash:latest command: server depends_on: - postgres - redis ports: - "5000:5000" environment: PYTHONUNBUFFERED: 0 REDASH_LOG_LEVEL: "INFO" REDASH_REDIS_URL: "redis://redis:6379/0" REDASH_DATABASE_URL: "postgresql://postgres@postgres/postgres" REDASH_COOKIE_SECRET: veryverysecret REDASH_WEB_WORKERS: 4 restart: always worker: image: redash/redash:latest command: scheduler environment: PYTHONUNBUFFERED: 0 REDASH_LOG_LEVEL: "INFO" REDASH_REDIS_URL: "redis://redis:6379/0" REDASH_DATABASE_URL: "postgresql://postgres@postgres/postgres" QUEUES: "queries,scheduled_queries,celery" WORKERS_COUNT: 2 restart: always redis: image: redis:3.0-alpine restart: always postgres: image: postgres:9.5.6-alpine # volumes: # - /opt/postgres-data:/var/lib/postgresql/data restart: always nginx: image: redash/nginx:latest ports: - "80:80" depends_on: - server links: - server:redash restart: always
通过compose文件可以看出,redash依赖redis和pgsql数据库。redis用来缓存一些查询result,而pgsql是元数据库,目前不支持mysql替换pgsql。
其他安装方式,见
先上一张实际的效果图:
在实际使用中,redash和superset各有优劣。根据自己的场景来选择吧。查阅资料的过程中,已经有人对redash做了二次开发,这也许是深度使用的必经之路。
为什么非要使用这种开源BI可视化工具? 因为如果是前后端配合的话,工作量会很大。而且也很难实现随时修改随时上线。不过这取决于前期数据的完整性。本文转自中文社区-
转载地址:http://nfvfm.baihongyu.com/